NEWTON'S BACKWARD INTERPOLATION FORMULA IN C++ & WITH EXPLANATION
Backward Interpolation.Interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable, while the process of computing the value of the function outside the given range is called extrapolation.
this progaran is running through the codechef ide
newtons backword interpolation formula
// CPP Program to interpolate using
// newton backward interpolation
#include <bits/stdc++.h>
using namespace std;
// Calculation of u mentioned in formula
float backward(float u, int n)
{
float temp = u;
for (int i = 1; i < n; i++)
temp = temp * (u + i);
return temp;
}
// Calculating factorial of given n
int fact(int n)
{
int f = 1;
for (int i = 2; i <= n; i++)
f *= i;
return f;
}
int main()
{
// number of values given
int n = 5;
float x[] = { 1900,1910,1920,1930,1940,1950};
//input the values in tale
float y[n][n];
y[0][0] = 65;
y[1][0] = 76;
y[2][0] = 91;
y[3][0] = 97;
y[4][0] = 110;
// code for to display difference table
for (int i = 1; i < n; i++) {
for (int j = n - 1; j >= i; j--)
y[j][i] = y[j][i - 1] - y[j - 1][i - 1];
}
// Displaying difference table
for (int i = 0; i < n; i++) {
for (int j = 0; j <= i; j++)
cout << setw(4) << y[i][j]
<< "\t";
cout << endl;
}
float value = 1945; //which we have to interpolate
float sum = y[n - 1][0];
float u = (value - x[n - 1]) / (x[1] - x[0]);
for (int i = 1; i < n; i++) {
sum = sum + (backward(u, i) * y[n - 1][i]) /
fact(i);
}
cout << "\n Value at " << value << " is "
<< sum << endl;
return 0;
}
OUTPUT
this progaran is running through the codechef ide
- share our blog
- please don't forget to share our blog and also subscribe to our youtube channel.. click here to subscribe our youtube channel
- click here to follow our Facebook page
PLZ... Share This Site To Your Contacts.....
PLZ... Share This Site To Your Contacts.....